15: Real-Time Performance Monitoring 🆕¶
Overview¶
Phase: Observability Trilogy Difficulty: Production Duration: 30 min
Learn real-time performance monitoring for LLM inference on Kaggle dual Tesla T4 GPUs.
Learning Objectives¶
- ✅ Build live Plotly FigureWidget dashboards
- ✅ Integrate llama.cpp /metrics endpoint
- ✅ Monitor GPU with PyNVML
- ✅ Track request queues via /slots
- ✅ Background metrics collection
Topics Covered¶
- 📚 Live Plotly dashboards
- 📚 llama.cpp /metrics
- 📚 PyNVML GPU monitoring
Prerequisites¶
- llamatelemetry v0.1.0 installed
- Kaggle dual Tesla T4 environment (30GB VRAM)
- Basic Python knowledge
- Completed Tutorial 01
Quick Start¶
# Install llamatelemetry
!pip install -q --no-cache-dir git+https://github.com/llamatelemetry/llamatelemetry.git@v0.1.0
# Verify GPU environment
!nvidia-smi --query-gpu=index,name,memory.total --format=csv
Key Concepts¶
🆕 Observability Trilogy¶
This tutorial is part of the Observability Trilogy (Notebooks 14-16), which introduces production-grade observability features:
- Notebook 14: OpenTelemetry integration with distributed tracing
- Notebook 15: Real-time performance monitoring with live dashboards
- Notebook 16: Complete production observability stack
Step-by-Step Guide¶
Step 1: Environment Setup¶
Verify your Kaggle environment has dual Tesla T4 GPUs.
Step 2: Installation¶
Install llamatelemetry v0.1.0 with all dependencies.
Step 3: Configuration¶
Configure the server for optimal performance on Kaggle T4.
Step 4: Implementation¶
Implement the tutorial objectives step by step.
Step 5: Verification¶
Test and verify the implementation works correctly.
Expected Output¶
After completing this tutorial, you should be able to:
- ✅ Build live Plotly FigureWidget dashboards
- ✅ Integrate llama.cpp /metrics endpoint
- ✅ Monitor GPU with PyNVML
- ✅ Track request queues via /slots
- ✅ Background metrics collection
Common Issues¶
Issue: Server Fails to Start¶
Solution: Check GPU memory and ensure no other processes are using the GPUs.
Issue: Out of Memory¶
Solution: Reduce context size or use lower quantization.
Performance Benchmarks¶
Expected performance on Kaggle dual Tesla T4:
| Model | Quantization | Speed | VRAM |
|---|---|---|---|
| Gemma-3 1B | Q4_K_M | ~85 tok/s | ~1 GB |
| Gemma-3 4B | Q4_K_M | ~42 tok/s | ~2.5 GB |
| Llama-3.1 8B | Q4_K_M | ~25 tok/s | ~5 GB |
Next Steps¶
- Continue to Tutorial 16
- Explore the API Reference
- Read the Architecture Guide
- Check the Troubleshooting Guide
Resources¶
- 📘 Official Documentation
- 📦 GitHub Repository
- 📓 All Notebooks
- 💬 Discussions
Full Notebook¶
View and run the complete notebook on Kaggle:
Tutorial {num}/{len(NOTEBOOKS)} | llamatelemetry v0.1.0 | Back to Tutorials