Skip to content

04: GGUF Quantization

Kaggle Time Level

Overview

Phase: Foundation Difficulty: Beginner Duration: 20 min

Learn gguf quantization for LLM inference on Kaggle dual Tesla T4 GPUs.

Learning Objectives

  • ✅ Understand quantization types (K-quants, I-quants)
  • ✅ Calculate VRAM requirements
  • ✅ Select optimal quantization for Kaggle T4
  • ✅ Benchmark different quantizations
  • ✅ Learn GGUF file structure

Topics Covered

  • 📚 29 quantization types
  • 📚 VRAM estimation
  • 📚 Quality vs size

Prerequisites

  • llamatelemetry v0.1.0 installed
  • Kaggle dual Tesla T4 environment (30GB VRAM)
  • Basic Python knowledge
  • Completed Tutorial 01

Quick Start

# Install llamatelemetry
!pip install -q --no-cache-dir git+https://github.com/llamatelemetry/llamatelemetry.git@v0.1.0

# Verify GPU environment
!nvidia-smi --query-gpu=index,name,memory.total --format=csv

Key Concepts

Quantization Types

K-Quants (Recommended): - Q4_K_M - Best balance (4.85 bits/weight) - Q5_K_M - Higher quality (5.69 bits/weight) - Q6_K - Near lossless (6.59 bits/weight)

I-Quants (Large Models): - IQ3_XS - For 70B models on dual T4 (3.30 bits/weight) - IQ4_XS - Better quality (4.25 bits/weight)

Step-by-Step Guide

Step 1: Environment Setup

Verify your Kaggle environment has dual Tesla T4 GPUs.

Step 2: Installation

Install llamatelemetry v0.1.0 with all dependencies.

Step 3: Configuration

Configure the server for optimal performance on Kaggle T4.

Step 4: Implementation

Implement the tutorial objectives step by step.

Step 5: Verification

Test and verify the implementation works correctly.

Expected Output

After completing this tutorial, you should be able to:

  • ✅ Understand quantization types (K-quants, I-quants)
  • ✅ Calculate VRAM requirements
  • ✅ Select optimal quantization for Kaggle T4
  • ✅ Benchmark different quantizations
  • ✅ Learn GGUF file structure

Common Issues

Issue: Server Fails to Start

Solution: Check GPU memory and ensure no other processes are using the GPUs.

nvidia-smi

Issue: Out of Memory

Solution: Reduce context size or use lower quantization.

ctx_size=2048  # Instead of 4096

Performance Benchmarks

Expected performance on Kaggle dual Tesla T4:

Model Quantization Speed VRAM
Gemma-3 1B Q4_K_M ~85 tok/s ~1 GB
Gemma-3 4B Q4_K_M ~42 tok/s ~2.5 GB
Llama-3.1 8B Q4_K_M ~25 tok/s ~5 GB

Next Steps

Resources

Full Notebook

View and run the complete notebook on Kaggle:

Kaggle


Tutorial {num}/{len(NOTEBOOKS)} | llamatelemetry v0.1.0 | Back to Tutorials