02: Server Setup¶
Overview¶
Phase: Foundation Difficulty: Beginner Duration: 15 min
Learn server setup for LLM inference on Kaggle dual Tesla T4 GPUs.
Learning Objectives¶
- ✅ Understand server configuration options
- ✅ Configure for Kaggle T4
- ✅ Test different configurations
- ✅ Monitor server health
- ✅ Benchmark performance
Topics Covered¶
- 📚 Server configuration
- 📚 Performance optimization
- 📚 Health monitoring
Prerequisites¶
- llamatelemetry v0.1.0 installed
- Kaggle dual Tesla T4 environment (30GB VRAM)
- Basic Python knowledge
- Completed Tutorial 01
Quick Start¶
# Install llamatelemetry
!pip install -q --no-cache-dir git+https://github.com/llamatelemetry/llamatelemetry.git@v0.1.0
# Verify GPU environment
!nvidia-smi --query-gpu=index,name,memory.total --format=csv
Key Concepts¶
Server Configuration¶
llamatelemetry uses llama.cpp's llama-server for high-performance GGUF model inference.
from llamatelemetry.server import ServerManager
server = ServerManager()
server.start_server(
model_path=model_path,
gpu_layers=99,
ctx_size=4096,
tensor_split="0.5,0.5" # Dual GPU split
)
Step-by-Step Guide¶
Step 1: Environment Setup¶
Verify your Kaggle environment has dual Tesla T4 GPUs.
Step 2: Installation¶
Install llamatelemetry v0.1.0 with all dependencies.
Step 3: Configuration¶
Configure the server for optimal performance on Kaggle T4.
Step 4: Implementation¶
Implement the tutorial objectives step by step.
Step 5: Verification¶
Test and verify the implementation works correctly.
Expected Output¶
After completing this tutorial, you should be able to:
- ✅ Understand server configuration options
- ✅ Configure for Kaggle T4
- ✅ Test different configurations
- ✅ Monitor server health
- ✅ Benchmark performance
Common Issues¶
Issue: Server Fails to Start¶
Solution: Check GPU memory and ensure no other processes are using the GPUs.
Issue: Out of Memory¶
Solution: Reduce context size or use lower quantization.
Performance Benchmarks¶
Expected performance on Kaggle dual Tesla T4:
| Model | Quantization | Speed | VRAM |
|---|---|---|---|
| Gemma-3 1B | Q4_K_M | ~85 tok/s | ~1 GB |
| Gemma-3 4B | Q4_K_M | ~42 tok/s | ~2.5 GB |
| Llama-3.1 8B | Q4_K_M | ~25 tok/s | ~5 GB |
Next Steps¶
- Continue to Tutorial 03
- Explore the API Reference
- Read the Architecture Guide
- Check the Troubleshooting Guide
Resources¶
Full Notebook¶
View and run the complete notebook on Kaggle:
Tutorial {num}/{len(NOTEBOOKS)} | llamatelemetry v0.1.0 | Back to Tutorials