Installation¶
llamatelemetry v0.1.0 is designed for Kaggle dual T4 notebooks with pre-built CUDA binaries optimized for Tesla T4 GPUs.
Requirements¶
Recommended (Kaggle)¶
- Platform: Kaggle Notebooks
- GPUs: 2× Tesla T4 (15GB VRAM each)
- CUDA: 12.x (pre-installed on Kaggle)
- Python: 3.11+
- Internet: Required for initial setup
Minimum¶
- GPUs: 1× Tesla T4 (15GB VRAM)
- CUDA: 12.0+
- Python: 3.10+
Quick Install (Kaggle)¶
Install llamatelemetry directly from GitHub:
!pip install -q --no-cache-dir --force-reinstall \
git+https://github.com/llamatelemetry/llamatelemetry.git@v0.1.0
What Happens During Installation¶
- Python package installation - Installs llamatelemetry Python SDK
- Binary download - Downloads pre-built CUDA binaries (~961 MB) on first import
- GPU detection - Automatically detects Tesla T4 GPUs
- Binary verification - Verifies SHA256 checksums
- FlashAttention setup - Configures FlashAttention v2 support
Verify Installation¶
After installation, verify everything is working:
import llamatelemetry
print(f"Version: {llamatelemetry.__version__}")
from llamatelemetry import check_cuda_available, get_cuda_device_info
from llamatelemetry.api.multigpu import gpu_count
print(f"CUDA Available: {check_cuda_available()}")
print(f"GPU Count: {gpu_count()}")
cuda_info = get_cuda_device_info()
if cuda_info:
print(f"CUDA Version: {cuda_info.get('cuda_version', 'N/A')}")
Expected output:
Binary Download Details¶
On first import, llamatelemetry automatically downloads optimized binaries:
- Source: HuggingFace Hub (
waqasm86/llamatelemetry-binaries) - Size: ~961 MB
- Features: FlashAttention + Tensor Cores + Multi-GPU tensor-split
- Cache location:
/root/.cache/llamatelemetry/(Linux/Kaggle) - Verification: SHA256 checksum verification
Manual Binary Download¶
If automatic download fails, you can manually download:
from llamatelemetry.binaries.download import download_and_install_binaries
download_and_install_binaries(
version="0.1.0",
platform="kaggle-t4x2"
)
Kaggle Setup¶
Enable Dual T4 GPUs¶
- Open your Kaggle notebook
- Click Settings (gear icon, right sidebar)
- Under Accelerator, select GPU T4 x2
- Click Save
- Restart the notebook session
Enable Internet¶
- In notebook settings, ensure Internet is ON
- Required for downloading models and binaries
Dependencies¶
llamatelemetry automatically installs these dependencies:
Core Dependencies¶
opentelemetry-api>=1.39.0- OpenTelemetry APIopentelemetry-sdk>=1.39.0- OpenTelemetry SDKopentelemetry-exporter-otlp>=1.39.0- OTLP exporteropentelemetry-semantic-conventions>=0.51b0- Semantic conventions
Visualization Dependencies¶
graphistry>=0.34.0- GPU-accelerated graph visualizationcudf-cu12>=24.0.0- GPU dataframes (RAPIDS)plotly>=5.18.0- Interactive plotting
Inference Dependencies¶
huggingface-hub>=0.25.0- Model downloadpynvml>=12.0.0- GPU monitoring
Troubleshooting¶
Binary Download Fails¶
If binary download fails, try:
# Clear cache and retry
import shutil
shutil.rmtree("/root/.cache/llamatelemetry/", ignore_errors=True)
# Reinstall
!pip install -q --no-cache-dir --force-reinstall \
git+https://github.com/llamatelemetry/llamatelemetry.git@v0.1.0
CUDA Not Available¶
Verify CUDA installation:
If CUDA is not available:
- Ensure GPU is enabled in Kaggle settings
- Restart notebook session
- Check that accelerator is set to "GPU T4 x2"
ImportError¶
If you see import errors, ensure all dependencies are installed:
!pip install --upgrade \
opentelemetry-api \
opentelemetry-sdk \
opentelemetry-exporter-otlp \
graphistry \
plotly \
huggingface-hub
Version Conflicts¶
llamatelemetry requires specific versions of OpenTelemetry packages. If you encounter version conflicts:
# Force reinstall with no cache
!pip install -q --no-cache-dir --force-reinstall \
git+https://github.com/llamatelemetry/llamatelemetry.git@v0.1.0
Alternative Installation Methods¶
Install from Source¶
For development or custom builds:
See Build from Source for details.
Install Specific Version¶
Install a specific release version:
Next Steps¶
After installation:
- Quick Start Guide - Get running in 5 minutes
- First Steps - Understand basic concepts
- Tutorial 01: Quick Start - First hands-on tutorial
Need Help?¶
- Troubleshooting: Troubleshooting Guide
- GitHub Issues: Report a problem
- Discussions: Ask questions